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The stability of the flow in a half-zone configuration is analysed with the aid of 
direct numerical simulation. The work is concentrated on the small Prandtl numbers 
relevant for typical semiconductor melts. The axisymmetric thermocapillary flow is 
found to be unstable to a steady non-axisymmetric state with azimuthal wavenumber 
2, for a zone with aspect ratio 1. The critical Reynolds number for this bifurcation is 
1960. This three dimensional steady solution loses stability to an oscillatory state at 
a Reynolds number of 6250. For small Prandtl numbers, both bifurcations are seen 
to be quite insensitive to changes in the Prandtl number, and are thus hydrodynamic 
in nature. An analogy to the instability of thin vortex rings is made. This analogy 
suggests a physical mechanism behind the instability and also gives an explanation of 
how the azimuthal wavenumber of the bifurcated solution is selected. The implications 
of this for the floating-zone crystal growth process are discussed. 

1. Introduction 
One method for the production of single crystals of semiconductors is the so-called 

float-zone method (FZ). In this method a drop of semiconductor melt is held by 
surface tension forces between two solid rods of the same material. The drop is kept 
molten by an intense heat source focused on it. The two suspending rods are cooled, 
and the heat source is passed slowly along the rod so that the material melts and 
re-solidifies as the heat source passes. After one or several such passes the purity 
and the crystal structure of the rod is greatly improved. The main advantage of this 
method is that it is containerless, and thus makes it possible to produce extremely 
pure crystals. 

It has long been known that the fluid motion in this system is caused both by 
gravitational and thermocapillary convection. The convection has undesired effects 
and as a means of suppressing the gravitational convection, the FZ-method has 
been proposed for space processing of materials. However, owing to the intense 
temperature gradients that are present over the drop surface, the thermocapillary 
convection may be significant, even on Earth. A lot of attention has been focused on 
the thermocapillary convection in this system. One of the first works to point out the 
importance of thermocapillary effects was Chang & Wilcox (1976). 

Experiments on the FZ method, both on Earth and in microgravity conditions in 
space, have shown a banded structure, striations, in the chemical composition of the 
finished crystals. From this it has been suggested that the flow in the FZ has been 
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FIGURE 1.  The geometry of the half-zone. 

oscillatory in time during the growth of the crystal. These striations are undesirable 
and actually limit the usefulness of the FZ-method. The flow oscillations are believed 
to be the result of an instability of the steady thermocapillary convection causing a 
flow which is periodic in time. It is hoped that a thorough understanding of this 
phenomenon could suggest ways to improve the design of the crystal growth process. 
This problem has also attracted attention recently as a representative of a class of 
basic stability problems of thermocapillary convection. 

Much of the recent work in this area has been done on a simpler model problem, the 
half-zone (HZ). In this problem the heat source is replaced by maintaining different 
temperatures on the two suspending rods, see figure 1. A number of experiments with 
this system has been carried out for different liquids. All these liquids had higher 
Prandtl numbers than those typical of semiconductor melts. The typical result of these 
experiments is that there is a transition from steady axisymmetric flow to oscillatory 
three dimensional flow at some critical point. In the work of Preisser, Schwabe & 
Scharmann (1983) detailed experiments are carried out to detect the critical points for 
the onset of oscillatory flow and flow visualizations to identify the spatial structure 
of the bifurcated solutions. 

The transition from steady to oscillatory thermocapillary convection has been 
studied theoretically by several authors, in different geometries. Several distinct 
instability mechanisms leading to oscillatory flow have been demonstrated. One is 
the surface wave instability described by Smith & Davis (1983b), which is caused by 
the interaction of the base-state shear at the interface, and the velocity disturbance 
induced by a perturbation of the free surface. Thermocapillarity is thus important 
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only for maintaining the base state for this mechanism. This instability has also 
been found in two numerical studies in both two-dimensional containers and axially 
symmetric floating zone configurations, Kazarinoff & Wilkowski (1989, 1990). 

Thermocapillarity is however crucial in producing the hydrothermal waves of 
Smith & Davis (1983a) and Smith (1988). The underlying mechanisms, which have 
been described by Smith (1986), are different for low and high Prandtl numbers, as 
well as for different base-state velocity profiles (notably linear for Couette flow in a 
two-dimensional layer, parabolic for return flow with no net volume flux along the 
layer). The ones that are most relevant to the present study are the hydrothermal waves 
for return flow, which exhibit rolls propagating approximately perpendicularly to the 
surface flow for P r  < 1, and approximately two-dimensional rolls propagating against 
the direction of the surface flow for Pr > 1, Smith (1986) and Smith & Davis (1983a). 
This type of instability has also been found in infinitely long cylindrical liquid rods, 
Xu & Davies (1983, 1984). 

In two-dimensional containers of finite length, thermocapillary-driven flow may 
exhibit a steady spanwise roll structure, Ben Hadid & Roux (1990), and Villers & 
Platten (1992). At a Prandtl number around 4, these rolls have been observed 
to become oscillatory when the forcing is increased, Villers & Platten (1992), and 
may be related to the large Prandtl number instability mechanism of Smith (1986). 
However, at least for small Prandtl numbers, the instability leading to the appearance 
of the steady pattern seems to be entirely hydrodynamical. This is suggested by the 
fact that the patterns did appear in the simulations by Ben Hadid & Roux (1990), 
even though the temperature and velocity fields were decoupled in most of their 
runs. 

To the authors’ knowledge, the only three-dimensional direct numerical simulation 
of the HZ that has been reported in the literature is that by Rupp, Muller & 
Neumann (1989). They studied both small and large Prandtl numbers, and noted that 
for small Prandtl numbers the time-dependent flow is preceded by a bifurcation to a 
steady non-axisymmetric state. No critical numbers for this bifurcation are presented, 
however. There is only one result presented for this steady non-axisymmetric flow 
which at those parameter values is a solution with an azimuthal wavenumber of 2. 
Furthermore the numerical resolution was limited and no assessment of the accuracy 
of the numerical solutions was reported. 

Energy stability methods have been used by Shen et al. (1990) and Neitzel et al. 
(1991) to study the stability of the flow in a HZ. In both these works the basic state 
is computed numerically and the stability analysis is performed on this state. In the 
first paper axially symmetric disturbances were considered for a range of Prandtl 
numbers. In the second, the disturbances were allowed to be three-dimensional while 
the Prandtl number was fixed at P r  = 1 and the aspect ratio of the HZ was varied. 

Linear stability analysis of the HZ problem has been performed by Neitzel etl al. 
(1993). In this work the basic state is computed numerically and the linear stability 
problem is solved for three-dimensional disturbances. The Prandtl number is fixed at 
1 and the aspect ratio is varied. For this Prandtl number they find a time-periodic 
instability with an azimuthal wavenumber of 2. 

Another linear stability analysis has been done by Kuhlmann & Rath (1993). In 
this work the aspect ratio of the zone is fixed at 1 and a span of Prandtl numbers 
are investigated. The basic state is computed numerically. These basic states are 
limited to axisymmetric states but the stability analysis allows for three-dimensional 
disturbances. For small Prandtl numbers the first bifurcation from an axisymmetric 
state was found to be to a steady non-axisymmetric state. The critical eigenmode 
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for this instability is found to have an azimuthal wavenumber of 1. This instability 
remains for very small Prandtl numbers indicating that it is purely hydrodynamical 
in character. Since the method used in that work is unable to treat non-axisymmetric 
basic states no results for the bifurcation to time-periodic flow are computed for small 
Prandtl numbers. For larger Prandtl numbers the results in Kuhlmann & Rath (1993) 
indicate a hydrothermal instability of the type described in Smith & Davis (1983a) 
with an azimuthal wavenumber of 1. 

As shall be evident from the later sections of this paper our results do not agree 
with those of Kuhlmann & Rath (1993). Apparently there was some error in their 
calculations, which was discovered after the publication of their paper (Kuhlmann, 
private communication 1994). They have since repeated some computations, and did 
then get results which are in agreement with our results and those of Rupp et a1 
(1989). 

In the present work the nonlinear evolution of the flow in a HZ is studied as the 
Reynolds number is increased. In order to focus on the technically important case of 
semiconductor melts, the work is concentrated on small and zero Prandtl numbers. 
The first instability is shown to be a hydrodynamical instability with many similarities 
to that for thin vortex rings. This analogy gives an indication of why the flow becomes 
unstable, and how the azimuthal wavenumber of the bifurcated solution is selected. 
As the Reynolds number of the flow increases, this steady three-dimensional state 
bifurcates into a periodic time-dependent flow. This transition is also shown to be 
a purely hydrodynamical instability. Conditions for this transition and properties of 
the flow are given. 

The paper is organized as follows. In $2 the mathematical model of the HZ is 
presented. In $ 3 a short description of the numerical method is presented. The results 
of the computations together with a discussion of the instabilities are given in $4, 

2. Mathematical model 
The half-zone consists of a cylindrical liquid bridge hanging between two circular 

flat interfaces, see figure 1. The liquid is kept in place by surface tension forces acting 
on the free surface. The distance between the flat interfaces is H and the radius is R. 
A temperature difference is maintained over the liquid bridge by prescribing Tbottom 
and Ttop at the bottom and top interfaces respectively. In the following we will assume 
that Tbortom > Ttop, and we will frequently refer to the bottom and top faces as ‘hot’ 
and ‘cold’ respectively. 

The surface tension, acting on the free surface, is considered to be a linearly 
decreasing function of temperature, 

r = T o - y T .  (2- 1 ) 

This dependency together with the temperature gradient on the free surface will drive 
a motion in the liquid bridge. The constant y is assumed to be positive, which means 
that the surface stress will generally tend to pull away from a high-temperature spot 
on the surface. The equilibrium shape of the the free surface is determined by the net 
surface tension, which is assumed so large (i.e. very small capillary number) that the 
interface assumes a perfectly cylindrical shape. 

The fluid in the zone is treated as an incompressible Newtonian liquid. The 
equations governing the fluid’s motion and temperature are thus the incompressible 
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Navier-Stokes equations and the energy equation. They are given in non-dimensional 
form by : 

1 
Re 

aU 
- + u v - u  = -vp + - p u ,  
at 

v * u  = 0, (2-3) 

V 2 T .  
dT 
- + u V - T  = - 
at ReP r (2.4) 

They are to be solved together with the boundary conditions: 

S i p ,  - ni(nkSkjnj) = - (:: - - ( g n i )  n j )  , = A,  

where Sij is the stress tensor. 
V T * n = O ,  r = A ,  

u = O ,  T = 1 ,  z = O ,  

u = O ,  T = 0 ,  z = l .  (2.9) 
The equations (2.6) can be found from a stress balance at the free surface. It is also, 
from these equations, obvious that as soon as there is a temperature gradient across 
the free surface there is also a motion set up in the zone. 

These equations have been made non-dimensional using the height of the zone as 
a typical length and the following scales for velocity, temperature and time : 

(2.10) 

(2.11) 

t = H / U .  (2.12) 
The non-dimensional numbers appearing in the equations are the Reynolds number, 
Re, the Prandtl number, P r ,  and the aspect ratio, A.  They are defined as 

yATH 
R e =  -. (2.13) 

(2.14) 
V 

K 
P r  = -, 

R 
H’ 

A = -  (2.15) 

where p and v are the dynamical and kinematical viscosities, IC is the thermal 
diffusivity. Often the Marangoni number, M a  = yATH/pK = RePr, is used instead 
of the Reynolds number. It should be noted here that the velocity scale is somewhat 
arbitrary. Zebib, Homsy & Meiburg (1985) showed that the magnitude of the velocity 
is much smaller than the reference velocity used above, and that the corresponding 
Reynolds number thus overestimates the importance of inertia relative to viscous 
forces. 

3. Numerical method 
A finite element method with tri-quadratic isoparametric interpolation for velocity, 

pressure and temperature, giving a predicted third-order-accurate method, has been 
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Grid (n, x n,,, x n,) Urn, U,,, 
10 x 16 x 10 0.08876 0.0115 
20 x 16 x 20 0.08872 0.0130 
20 x 32 x 20 0.08671 0.0132 
30 x 48 x 30 0.08647 0.0134 

TABLE 1. Results on different grids, Re = 3500, P r  = 0.01. 

used. The restrictions imposed by the Babushka-Brezzi condition are avoided by 
using a method similar to that by Hansbo & Szepessy (1990). The time discretization 
is done using an Euler implicit scheme for the viscous terms and an Euler explicit 
scheme for the nonlinear advection terms. The pressure is decoupled from the velocity 
computations by using a projection method as described in Shien (1993). 

This method requires the solution of linear systems of equations at each time step. 
These systems are symmetric and positive definite and are solved efficiently with 
the conjugate gradient method using an incomplete Cholesky decomposition as a 
preconditioner, Golub & van Loan (1989). 

3.1. Validation 
Great care has been taken in the verification of the computer code. We have checked 
our nonlinear computations against those in a two-dimensional box with thermocap- 
illary convection, Zebib et al. (1989, with excellent agreement. An axisymmetric HZ 
solution (Shen et al. 1990) was also computed for the actual geometry used in the 
present study, i.e. a cylinder. To validate the azimuthal component of the thermo- 
capillary boundary conditions, the flow in an annular region where the shear stress 
is prescribed on the outer surface was computed and compared with the analytical 
solution for this problem. 

To check the influence of the grid resolution, a bifurcated flow field was computed 
on several different grids for Re = 3500,Pr = 0.01, as presented in table 1. The 
maximum velocity and the maximum azimuthal velocity can be seen in table 1 as a 
function of the number of grid points in the r-, cp- and z-directions, respectively. The 
accuracy of the bifurcated solution is better than 3% on the 20 x 16 x 20 mesh. 

Solutions have been traced through increasing values of the Reynolds number. An 
available solution at a lower Reynolds number has been used as initial condition and 
the flow has been simulated time dependently until it has been judged to be either 
steady or periodic. For the time-periodic regimes the Reynolds number has been both 
increased and decreased in order to check for any hysteresis. 

4. Results 

For sufficiently weak axial temperature gradients, i.e. low Reynolds numbers, the 
thermocapillary convection in a HZ is steady and axisymmetric. This parameter 
range has been studied in numerous previous works, see Chang & Wilcox (1976). 
The flow field can be characterized as a single axisymmetric toroidal vortex. The 
orientation of the vortex is such that the flow on the free cylindrical surface is 
directed from the hot end of the zone, towards the cold end, if surface tension 
decreases with temperature. For small Prandtl numbers and Reynolds numbers small 

4.1. Basic state 
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FIGURE 2. Amplitude of the bifurcated solution, P r  = 0.01,A = 1. 

enough for the flow to be steady and axisymmetric, the effect of convection on the 
temperature field is insignificant (a properly defined Pkclet number is small). 

4.2. The first bifurcation: steady three-dimensional state 
The steady axisymmetric solution described above persists up to a Reynolds number 
of Re = 1960 at a Prandtl number of P r  = 0.01. At that value of Re, the axisymmetric 
state described in the previous section bifurcates into a three-dimensional steady state 
with an azimuthal wavenumber of 2. The amplitude of the bifurcated solution, as 
obtained from the nonlinear computations, can be seen in figure 2. Here the amplitude 
has been defined as the magnitude of the azimuthal flow compared to the maximum 
axial velocity in the zone. Close to the critical point the amplitude is proportional 
to (Re - as expected for a supercritical bifurcation. In the three-dimensional 
supercritical state, the azimuthal velocity is non-zero. As Re increases, it quickly 
grows to be of a significant magnitude. At Re = 3500, the amplitude of the azimuthal 
flow is close to 15 YO of the maximum velocity in the zone. 

The nonlinear supercritical solution for Re = 3500, P r  = 0.01, is shown in figures 3- 
5. In figure 3 the velocity field can be seen in a horizontal cut at z = 0.5. Figures 4 
and 5 show the velocity field in two orthogonal vertical cuts at cp = 0 and cp = x / 2 ,  
through a diameter of the zone. It is seen that the core of the vortex has moved up 
and out, i.e. towards the free surface and towards the cold interface in the cut at 
cp = 0. In the cut at cp = x / 2 ,  the vortex centre has moved in the opposite direction, 
away from the free surface and towards the hot interface. 

The associated temperature field can be seen in corresponding cuts in the same 
figures. The influence of convection on the temperature field is still weak but the 
azimuthal flow has produced two hot and two cold spots on the free surface. 

It is of interest to note that the flow on the free surface is towards the hot spots 
and away from the cold spots. This is in contrast to what would be expected from the 
thermocapillary effect which would produce flow away from hot spots and towards 
cold spots. Thus the thermocapillary effect here acts as a weak force counteracting 
the azimuthal flow. 
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FIGURE 3. Velocity and temperature field at z = 0.5, Re = 3500, P r  = 0.01. 
Isotherms from 0.45 to 0.55, increment 0.005. 

This indicates that the transition from steady, symmetric flow to steady, three- 
dimensional flow is caused by a purely hydrodynamical effect. In other words, the 
role of the surface tension variation is only to drive the base flow. The loss of stability 
at Re = 1960 occurs because this basic flow pattern becomes unstable in the interior; 
the coupling between temperature and velocity at the surface is not important for 
the instability mechanism. To check this conjecture, a case similar to that described 
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FIGURE 4. Velocity and temperature field at cp = O,z, Re = 3500,Pr = 0.01. 
Isotherms from 0 to 1, increment 0.05. 

FIGURE 5. Velocity and temperature field at cp = +n/2, Re = 3500,Pr = 0.01. 
Isotherms from 0 to 1, increment 0.05. 

FIGURE 6. Position of the vortex core, Re = 3500, P r  = 0.01. 

above was computed, with the only difference that the Prandtl number was set to 
zero. The same type of instability appeared in this case at Re = 1898. This shows 
clearly that the first bifurcation is not caused by a thermocapillary effect. 

To understand the mechanism behind this instability it is instructive to take a closer 
look at the bifurcated solution. In figure 6 the position of the vortex core in the 
bifurcated solution can be seen. The figure shows the location of the vortex core with 
an arbitrary thickness added. In the axisymmetric basic state this would simply be an 
axisymmetric toroid. In the bifurcated solution the vortex core is, as can be seen in 
figure 6, saddle shaped. 

This saddle-shaped vortex shares many properties with the solution obtained for 
unstable vortex rings. In the work by Widnall & Tsai (1977) the stability of a thin 
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vortex ring with constant vorticity in the core is analysed. They find that a vortex ring 
is almost always unstable. The instability is caused by the local straining motion that 
a curved vortex filament induces on itself. This effect is present in the HZ problem as 
well, but the presence of sidewalls and the free surface makes it difficult to make an 
exact analogy between the two problems. However, as we will see, there are striking 
similarities which makes us inclined to believe that the basic instability mechanism is 
the same. 

This theory for the stability of thin vortex rings predicts that the position of the 
vortex after the bifurcation will be displaced sinusoidally along the perimeter of the 
vortex core. The vortex will be displaced both vertically and radially along lines 
inclined at an angle of 45" with respect to the vertical axis. The orientation of these 
lines is such that the part of the vortex that is displaced towards the centre is also 
displaced downwards and correspondingly the part of the vortex that is displaced 
away from the centre is at the same time displaced upwards (for a vortex ring with 
the same orientation as the base flow in the HZ). The growth rate is real, so the 
disturbance is predicted to grow exponentially in time. 

The steady solution in the HZ can be viewed as having experienced an instability 
which has grown until is has saturated nonlinearly. The fact that the nonlinear 
solution is steady instead of oscillatory indicates that the linear growth rate would be 
real instead of complex, in agreement with the theory for thin vortex rings. Also, for 
the HZ, as seen in figures 4-6 , the displacement of the vortex core is qualitatively 
similar to the predictions from that theory, with a sinusoidal displacement with 
azimuthal wavenumber 2, and displacements up and down coupled to displacements 
out and in, respectively. The only visible discrepancy is that the angle is not exactly 
45". This discrepancy is probably due to the presence of the free surface and the solid 
interfaces. 

The wavenumber of an unstable disturbance of a vortex ring is also gwen by 
Widnall & Tsai (1977). They find that the azimuthal wavenumber, k ,  can be deter- 
mined from the relation 

where a is the vortex core diameter and K = 2.5 is a constant. This implies that 
the wavelength of an instability on a vortex ring is a fixed number of core radii, 
independent of ring radius. The growth rate is determined from the ratio of core 
radius to ring radius, and increases with decreasing core radius. 

In making the analogy between a vortex ring and the HZ, we assume the vortex core 
radius to be the height of the zone, which implies that the critical wavenumber would 
scale with the aspect ratio of the zone. For a zone with aspect ratio 1, (4.1) would 
predict an azimuthal wavenumber of 2, in agreement with our findings. We have 
not yet made a complete study of the influence of aspect ratio on the wavenumber 
selection. But for a zone with aspect ratio 1/3 the most unstable wavenumber was 
found to be 1, in agreement with (4.1), which gives the prediction 0.84. 

It is extremely interesting to note that in the experimental study of Preisser et al. 
(1983) a relation strikingly similar to (4.1) was found. The experiments were done 
with a fluid with P r  = 7. The critical wavenumber after the bifurcation was observed 
for different aspect ratios. The relation between wavenumber and aspect ratio was 
found to be 

which is quite close to that predicted by Widnall & Tsai (1977), (4.1). It must be 
pointed out that the transition was in this case not to a steady state but to an 

ka = IC (4.1) 

kA-' = 2.2 (4-2) 
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FIGURE 7 .  Amplitude of the bifurcated solution, P r  = O.Ol,A = 1 

oscillatory one. This may be due to the fact that the Prandtl number in their 
study was several orders of magnitude larger than in the present work, and that 
thermocapillary forces were probably significant in the bifurcated solution. 

The azimuthal wavenumber for the stationary solution that we obtain is in agree- 
ment with the findings of Rupp et al. (1989) who also predict a wavenumber 
2-solution for small Prandtl numbers and a similar aspect ratio. They do not present 
a critical Reynolds number for this bifurcation. The critical Reynolds number and 
the azimuthal wavenumber obtained in their study do not agree with the results 
presented in the paper of Kuhlmann & Rath (1993) who predict a wavenumber-1 
solution and a much smaller critical Reynolds number than obtained by us. As noted 
in the introduction an error in their computation was discovered after the publication 
of their paper. After this error was detected they have made some new computations 
which are in good agreement with the results presented here (Kuhlmann, private 
communication 1994). 

Ben Hadid & Roux (1990) and Villers & Platten found a transition to a steady 
multicellular state in two-dimensional rectangular containers, which may at first 
seem similar to that found here. However, the instability here is intrinsically three- 
dimensional, being caused by the motion that the curved vortex induces on itself. 
The closest corresponding situation in a rectangular container would be an initially 
straight vortex which became wavy along its length, something that could not have 
been captured in the two-dimensional studies by Ben Hadid & Roux (1990), and 
Villers & Platten (1992). Also, since we have only studied aspect ratio 1, and the cells 
observed by Ben Hadid & Roux (1990), and Villers & Platten (1992) have a similar 
aspect ratio, it is quite unlikely that they would be observed in the present case. It is 
of course possible that a multicellular state could appear in a longer cylindrical zone, 
but that would then be a different phenomenon than that discussed above. 

4.3. The second bifurcation: oscillatory state 
Increasing the Reynolds number further will cause the flow to become oscillatory. For 
a liquid with Prandtl number of 0.01 the critical Reynolds number for this bifurcation 
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was found to be Re = 6250. In figure 7 the amplitude of the temperature oscillations 
at mid-distance between the hot and cold interface can be seen as a function of 
Reynolds number. The simulations were started with initial data from both higher 
and lower Reynolds numbers in order to check for any hysteresis. It was not possible 
to detect any hysteresis and we thus conclude that the bifurcation is supercritical. 
The amplitude of the bifurcated solution is proportional to (Re - Re,)'/* as would be 
expected. 

Before giving a description of the oscillatory state it is fruitful to make some 
comments on the differences between the small Prandtl number case studied in this 
work and the works performed for Prandtl numbers larger than 1. In the larger 
Prandtl number case the flow visualizations done in experiments, Preisser et al. 
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FIGURE 9. Position of the vortex core at two different times in two different planes, 
Re = 9000,Pr = 0.01. 

(1983), show that the transition to oscillatory motion occurs directly from a steady 
axisymmetric state. The time-dependent motion was in these cases described as a 
three-dimensional travelling wave in the azimuthal direction. For smaller Prandtl 
numbers on the other hand, the results presented in the previous section show that 
the flow first becomes steady and non-axisymmetric before it starts to oscillate. This 
implies that the oscillatory motion for small Prandtl numbers can not be expected to 
behave like a travelling wave, since the motion after the supercritical bifurcation to an 
oscillatory state must be a small-amplitude disturbance superimposed on the steady 
three-dimensional state, if the Reynolds number is sufficiently close to the critical one. 
Exactly this behaviour was observed in the simulations, and shows that the onset of 
oscillations is indeed a secondary instability of the steady three-dimensional motion. 
This rules out the possibility of looking at the oscillatory state as a rotation of the 
saddle-shaped vortex which would correspond to a travelling wave type of solution 
similar to those that appear for larger Prandtl numbers. 

Snapshots of the velocity field at five different times are presented in figure 8. The 
velocity field is presented in an r-z cut at cp = f n / 2  corresponding to the place were 
the saddle-shaped vortex core has its minimum z value. As can be seen in this figure 
the flow field oscillates from left to right and back again. 

To give a better presentation of how the oscillatory state behaves, the position of 
the vortex core can be seen in figure 9 in a (y, z)-plane at two different times and in an 
(x,y)-plane at the same time levels. The bottom segments of the vortex at cp = + x / 2  
move back and forth in the radial direction, roughly keeping the distance between 
the two positions constant. The upper segments of the vortex core, cp = O,n, remain 
at approximately the same postion during the oscillations, but the slope changes, as 
can be seen in figure 9. 

To see if the mechanism causing this oscillatory transition is dependent o'n an 
interaction between the temperature and velocity field the Prandtl number was set to 
zero. For this case a completely similar transition occurred at a Reynolds number 
of 5962. The oscillations behave in a completely similar fashion as for P r  = 0.01. It 
is thus clearly demonstrated that the oscillatory instability is a pure hydrodynamical 
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FIGURE 10. Complete bifurcation diagram, P r  = 0.01,A = 1. 

effect not relying on any thermocapillary mechanism. The oscillatory instability is a 
secondary instability from the highly three-dimensional steady saddle-shaped vortex 
state described in the previous section. In the range of Prandtl numbers studied here, 
relevant for molten semiconductors, the influence of convection on the temperature 
field is so small that it can be neglected for the transition to oscillatory convection. 

There have not been many detailed experimental predictions of the onset of time- 
dependent motion for liquids with small Prandtl numbers. Croll, Miiller-Sebert & 
Nitsche (1989) tried to measure the critical Reynolds numbers for a silicon floating 
zone. They measured a critical Reynolds number for time-dependent motion to 
be in the range 61W8700, which agrees quite well with the present study. The 
experimental setup in that study is, however, quite different from that of a HZ but it 
is still interesting to see that the critical Reynolds number is close to that predicted 
by the present results. 

5. Conclusions 
The stability of the thermocapillary flow in a HZ has been analysed for small 

Prandtl numbers. When keeping the aspect ratio fixed at 1 and varying the Reynolds 
number the flow first loses stability to a steady three-dimensional state. This transition 
can be interpreted in terms of the stability of vortex rings. This analogy gives an 
understanding of the mechanism behind the instability and it also explains how the 
azimuthal wavenumber after the bifurcation is selected. In this steady state the 
azimuthal flow causes an azimuthal temperature gradient. The thermocapillary effect 
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acts in the opposite direction to the flow and consequently tries to suppress the 
azimuthal flow. For small Prandtl numbers this suppression is weak. 

Increasing the Reynolds number further causes the flow field to become oscillatory. 
This occurs at a Reynolds number close to 6250 for a Prandtl number of 0.01. 
This secondary instability is again caused by a purely hydrodynamical effect as 
demonstrated by the fact that the same instability occurs for a liquid with zero 
Prandtl number. 

The results show that for small Prandtl numbers the route from a steady axisym- 
metric state via a steady three-dimensional state to an oscillatory three-dimensional 
state, as the Reynolds number is increased, can be viewed as a succession of purely 
hydrodynamical instabilities. At small Prandtl numbers the coupling between the 
temperature and velocity field is so weak that it is of no importance for the insta- 
bilities. The complete picture of the different branches for P r  = 0.01 can be seen in 
figure 10. This scenario is independent of the Prandtl number, in the range of Prandtl 
numbers studied here, Pr = 0 + 0.01. 

The mechanism for transition to oscillatory convection in the HZ is hydrodynamical 
for small Prandtl numbers. This is in contrast to the higher Prandtl number case, 
mostly studied experimentally, where the coupling between the temperature and 
velocity field is probably of crucial importance. It is thus clearly incorrect to draw 
conclusions about the onset of oscillations from high Prandtl number experiments, 
and apply these to real crystal growth situations where P r  is small. 

The results imply that the flow in the FZ crystal growth process would be non 
axisymmetric at a much lower Reynolds number than that for oscillations to occur. 
This non-axisymmetry should be possible to detect in an experiment. If the oscillatory 
convection is to be avoided in a real crystal growth situation the Reynolds number 
must be kept below 6250. This is a low value and it might be difficult to achieve such 
a small Reynolds number, at least for large to moderate sized zones. 
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